A Quantum to Classical Phase Transition in Noisy Quantum Computers

نویسنده

  • Dorit Aharonov
چکیده

The fundamental problem of the transition from quantum to classical physics is usually explained by decoherence, and viewed as a gradual process. The study of entanglement, or quantum correlations, in noisy quantum computers implies that in some cases the transition from quantum to classical is actually a phase transition. We define the notion of entanglement length in ddimensional noisy quantum computers, and show that a phase transition in entanglement occurs at a critical noise rate, where the entanglement length transforms from infinite to finite. Above the critical noise rate, macroscopic classical behavior is expected, whereas below the critical noise rate, subsystems which are macroscopically distant one from another can be entangled. The macroscopic classical behavior in the supercritical phase is shown to hold not only for quantum computers, but for any quantum system composed of macroscopically many finite state particles, with local interactions and local decoherence, subjected to some additional conditions. This phenomenon provides a possible explanation to the emergence of classical behavior in such systems. A simple formula for an upper bound on the entanglement length of any such system in the super-critical phase is given, which can be tested experimentally.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High order perturbation study of the frustrated quantum Ising chain

In this paper, using high order perturbative series expansion method, the critical exponents of the order parameter and susceptibility in transition from ferromagnetic to disordered phases for 1D quantum Ising model in transverse field, with ferromagnetic nearest neighbor and anti-ferromagnetic next to nearest neighbor interactions, are calculated. It is found that for small value of the frustr...

متن کامل

اثر برهم‌کنش‌های چهار اسپینی برروی سیمای فاز مدل هایزنبرگ J1-J2 پادفرومغناطیس اسپین 3/2 شبکه لانه زنبوری

In this study, the effect of four-spin exchanges between the nearest and next nearest neighbor spins of honeycomb lattice on the phase diagram of S=3/2 antiferomagnetic Heisenberg model is considered with two-spin exchanges between the nearest and next nearest neighbor spins. Firstly, the method is investigated with classical phase diagram. In classical phase diagram, in addition to Neel order,...

متن کامل

نظم‌های مغناطیسی مدل هایزنبرگ j1-j2 پادفرومغناطیس شبکه‌ی لانه زنبوری در حضور برهم‌کنش ژیالوشینسکی-موریا

Motivated by recent experiments that detects Dzyaloshinskii-Moriya (DM) interaction in , we study the effects of DM interaction on magnetic orders of J1-J2 antiferromagnetic Heisenberg model. First, we find the classical phase diagram of the model using Luttinger-Tisza approximation. In this approximation, the classical phase diagram has two phases. For , the model has canted Neel and DM intera...

متن کامل

درهم‌تنیدگی کوانتومی و گذار فاز کوانتومی تحت اتلاف در مدل ناهمسانگرد هایزنبرگ XXZ با برهم‌کنش ژیالوسینکی - موریا

  Because the key issue in quantum information and quantum computing is entanglement, the investigation of the effects of environment, as a source of quantum dissipation, and interaction between environment and system on entanglement and quantum phase transition is important. In this paper, we consider two-qubit system in the anisotropic Heisenberg XXZ model with the Dzyaloshinskii-moriya inter...

متن کامل

فرمولبندی هندسی کوانتش تغییرشکل برزین

  In this paper we try to formulate the Berezin quantization on projective Hilbert space P(H) and use its geometric structure to construct a correspondence between a given classical theory and a given quantum theory. It wil be shown that the star product in berezin quantization is equivalent to the Posson bracket on coherent states manifold M, embodded in P(H), and the Berezin method is used to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999